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Transient flow of a viscous compressible fluid in
a circular tube after a sudden point impulse
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The flow of a viscous compressible fluid in a circular tube generated by a sudden
impulse at a point on the axis is studied on the basis of the linearized Navier–Stokes
equations. A no-slip boundary condition is assumed to hold on the wall of the tube.
Owing to the finite velocity of sound the flow behaviour differs qualitatively from
that of an incompressible fluid. The flow velocity and the pressure disturbance at any
fixed point different from the source point vanish at short time and decay at long
times with a t−3/2 power law.

1. Introduction
Compressibility has a significant effect on the dynamics of flow of a viscous fluid

in confined geometry. Owing to the finite velocity of sound the local disturbance of
quiescent fluid caused by a sudden impulse at a chosen distant point occurs only
after a finite travelling time, rather than instantaneously, as in an incompressible
fluid. It has been argued by Hagen et al. (1997) that in a slit or a tube there is
also a significant after effect at long times, different from that in an incompressible
fluid. Their computer simulation showed that the velocity correlation function of a
suspended particle decays at long times with a negative algebraic tail, in contrast with
the behaviour in infinite space, where the long-time tail has a positive amplitude. It
was later shown that this is due to the coupling to diffusive sound modes of long
wavelength (Pagonabarraga et al. 1999).

In the following we study the dynamics of flow in a circular tube, generated by
a sudden point impulse on the axis of the tube and in the direction of the axis.
The analysis is based on the solution of the linearized Navier–Stokes equations
for a compressible viscous fluid. The explicit form of the corresponding Green
function is found as an integral over wavenumber and frequency. The calculation is
a generalization of an earlier one for the same situation in an incompressible fluid
(Felderhof 2009). In a compressible fluid the component of the flow velocity in the
direction of the axis at any fixed point decays in time with a negative algebraic t−3/2

long-time tail. Similarly the pressure disturbance at any point also decays in time
with a t−3/2 long-time tail. We derive analytic expressions for the amplitude of the
long-time tails. The amplitude is inversely proportional to the velocity of sound.

The velocity autocorrelation function of a Brownian particle is related to the
frequency-dependent response of the particle to an applied oscillatory force by the
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fluctuation-dissipation theorem (Kubo, Toda & Hashitsume 1991). The frequency-
dependent admittance of a particle located on the axis can be calculated from
the Green function and from a generalized Faxén theorem derived by Bedeaux &
Mazur (1974) in point approximation, i.e. to first order in the ratio a/b, where a

is the particle radius and b is the radius of the tube. The velocity autocorrelation
function calculated in this manner is found to decay with a negative t−3/2 long-time
tail in agreement with computer simulation (Hagen et al. 1997; Pagonabarraga et al.
1999). At shorter times the calculated time-dependent correlation function agrees only
qualitatively with the result of computer simulation because the point approximation
used in the calculation has limited validity for the relatively large particle used in the
simulation.

The integral of the Green function over the entire time is identical with the steady-
state Green function studied by Hasimoto (1976) and Liron & Shahar (1978) for
an incompressible fluid. Therefore the integral of the flow pattern over the entire
time shows the complicated sequence of eddies found by these authors and by Blake
(1979).

2. Linear hydrodynamics of flow in a circular tube
We consider a viscous compressible fluid of shear viscosity η, bulk viscosity ηv

and equilibrium mass density ρ0 located in a circular tube of radius b. We choose
coordinates such that the z axis is along the axis of the tube, and we use cylindrical
coordinates (R, ϕ, z). For time t < 0 the fluid is at rest at static pressure ps . At time
t = 0 an impulse P is imparted to the fluid at the origin and directed along the z axis.
We study the resulting motion of the fluid for time t > 0.

For small-amplitude motion the flow velocity v(r, t) and the pressure p(r, t) are
governed by the linearized Navier–Stokes equations,

ρ0

∂v

∂t
= η∇2v +

(
1

3
η + ηv

)
∇∇ · v − ∇p + Pδ(r)δ(t),

∂p

∂t
= −ρ0c

2
0∇ · v,

⎫⎪⎬
⎪⎭ (2.1)

with impulse P =P ez and long-wave sound velocity c0. We assume that the flow
velocity satisfies the no-slip boundary condition at the wall of the cylinder, i.e. v = 0
at R = b. We look for the solution of (2.1) for which the flow velocity v(r, t) vanishes
and the pressure tends to the static pressure ps as z → ±∞ at any time t .

After Fourier analysis in time we find that the equations for the Fourier components

vω(r) =

∫ ∞

0

eiωtv(r, t) dt, pω(r) =

∫ ∞

0

eiωt [p(r, t) − ps] dt (2.2)

are

η
(
∇2vω − α2vω

)
+

(
1

3
η + ηv

)
∇∇ · vω − ∇pω = −Pδ(r),

∇ · vω − iβpω = 0,

⎫⎬
⎭ (2.3)

where we have used the abbreviations

α =

√
−iωρ0

η
, Reα > 0, β =

ω

ρ0c
2
0

. (2.4)



Flow of a viscous compressible fluid in a circular tube 99

We write the Fourier-transformed flow velocity as

vω(r) = v0ω(r) + v1ω(r), (2.5)

where v0ω(r) is the solution for infinite space and v1ω(r) is the reflected flow because
of the presence of the boundary. The flows can be expressed as

v0ω(r) = G0(r − r0) · P, vω(r) = G(r, r0) · P, (2.6)

with Green functions G0 and G. The Green function for infinite space is translationally
invariant and has been given explicitly by Jones 1981,

G0(r) =
1

4πη

(
e−αr

r
1 + α−2∇∇eiμr − e−αr

r

)
, (2.7)

with the abbreviation

μ = ω/c, Imμ > 0, (2.8)

where

c = c0

[
1 − iβ

(
4

3
η + ηv

)]1/2

. (2.9)

Since we consider P =P ez the azimuthal component of the flow velocity vanishes
on account of axial symmetry. The two non-vanishing components of the flow velocity
v0ω for infinite space can be expressed as

v0Rω(r) =
P

2π2ηα2

∫ ∞

0

v̂0R(k, ω, R) sin kz dk,

v0zω(r) =
P

2π2ηα2

∫ ∞

0

v̂0z(k, ω, R) cos kz dk,

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

with amplitudes

v̂0R(k, ω, R) = −ksK1(sR) + kuK1(uR),
v̂0z(k, ω, R) = s2K0(sR) − k2K0(uR),

}
(2.11)

with modified Bessel functions Kn(x) and the abbreviations

s =
√

k2 + α2, u =
√

k2 − μ2. (2.12)

In analogy to (2.10) we write the reflected flow velocity v1ω as

v1Rω(r) =
P

2π2ηα2

∫ ∞

0

v̂1R(k, ω, R) sin kz dk,

v1zω(r) =
P

2π2ηα2

∫ ∞

0

v̂1z(k, ω, R) cos kz dk,

⎫⎪⎪⎬
⎪⎪⎭ (2.13)

with amplitudes

v̂1R(k, ω, R) = A(k, ω)v̂Rp(k, ω, R) + B(k, ω)v̂Rv(k, ω, R),
v̂1z(k, ω, R) = A(k, ω)v̂zp(k, ω, R) + B(k, ω)v̂zv(k, ω, R),

}
(2.14)

where

v̂Rp(k, ω, R) = kuI1(uR), v̂Rv(k, ω, R) = ksI1(sR),
v̂zp(k, ω, R) = k2I0(uR), v̂zv(k, ω, R) = s2I0(sR),

}
(2.15)

with modified Bessel functions In(x). Together with the expression for the pressure
given below in (2.21) the expressions in (2.13) provide the general solution of (2.3),
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which is regular everywhere, except infinity. This must be combined with the singular
solution given by (2.10), (2.11) and (2.20) below. From the no-slip boundary condition
at R = b we find for the coefficients A(k, ω) and B(k, ω),

A(k, ω) =
P (k, ω)

Z(k, ω)
, B(k, ω) =

Q(k, ω)

Z(k, ω)
(2.16)

with denominator

Z(k, ω) = bs
[
usI0(sb)I1(ub) − k2I0(ub)I1(sb)

]
(2.17)

and numerators

P (k, ω) = s2 − sk2bK0(ub)I1(sb) − s2ubI0(sb)K1(ub),

Q(k, ω) = k2 − s2ubK0(sb)I1(ub) − k2sbI0(ub)K1(sb).

}
(2.18)

The Fourier transform of the pressure corresponding to the point excitation in
infinite space takes the form

p0ω(r) =
P

4π

c2
0

c2

z

r3
(1 − iμr)eiμr . (2.19)

This can be cast in the alternative form,

p0ω(r) =
P

2π2

c2
0

c2

∫ ∞

0

K0(uR)k sin kz dk. (2.20)

The pressure corresponding to the reflected flow field given by (2.13) is given by

p1ω(r) =
P

2π2

c2
0

c2

∫ ∞

0

A(k, ω)I0(uR)k sin kz dk. (2.21)

At zero frequency A(k, 0) = 2A2(k) with coefficient A2(k) given by (3.4) of Felderhof
(2009), so that in the zero-frequency limit (2.21) reduces to the steady-state pressure
given by (3.13) of Felderhof (2009).

It is evident from (2.3) that in the limit of zero frequency the equations reduce to
the steady-state Stokes equations for an incompressible fluid. Hence the integral over
the entire time of the velocity field v(r, t) and of the pressure disturbance p(r, t) − ps

reduces to the expressions found by Hasimoto (1976), Liron & Shahar (1978) and
Blake (1979). The steady-state flow velocity shows an infinite sequence of vortex rings
and decays to zero as z → ±∞. The steady-state pressure disturbance tends to ± a
constant as z → ±∞.

3. Pressure and flow velocity
The explicit expressions found above allow calculation of velocity and pressure at

any point r in the tube and at any time t by inversion of the Fourier transform
with respect to frequency. We consider first the pressure, since the expressions are
somewhat simpler than for the velocity. The pressure may be written as

p(r, t) = ps + δp(r, t), (3.1)

where the time dependence of the disturbance δp follows by inverse transform of the
expressions in (2.19) and (2.21). In the incompressible limit a non-vanishing pressure
perturbation is established everywhere instantaneously because of the infinite velocity
of sound, and the pressure surge at a chosen point diverges as 1/

√
t at short
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Figure 1. Plot of the normalized pressure disturbance 4πδp/P at the point R = 0.5b, z = 0.5b
in a tube of radius b = 1 in a compressible fluid with properties as in the computer simulation
of Hagen et al. (1997) as a function of time (solid curve). We compare with the corresponding
disturbance in infinite space (dashed curve).
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Figure 2. Plot of log10[4πδp/P ] as a function of log10 t corresponding to figure 1 (solid curve).
We compare with the straight line corresponding to the long-time tail given by (3.5) (dashed
line).

time, before decaying with a t−5/2 power law at long times (Felderhof 2009). For a
compressible fluid the pressure at any point different from the origin initially equals
the static pressure ps . At later times a pressure pulse passes through the point. We
shall find that the confinement in the tube causes a slow decay of the pressure
disturbance with a t−3/2 power law at long times.

We consider a compressible fluid with parameters chosen as in the computer
simulation of Hagen et al. (1997). In their units the mass density ρ0 is 24; the shear
viscosity η is 14.4; and the sound velocity c0 is 1/

√
2. The bulk viscosity ηv = 1/30

(Frenkel & Lowe 2005, private communication). In figure 1 we show the normalized
pressure perturbation 4πδp/P at the chosen point R = 0.5b, z = 0.5b for a tube of
radius b = 1 as a function of time. We compare with the corresponding pulse for
infinite space. It is evident that at short time the two pressure pulses are the same but
that the confinement in the tube causes a slow decay at long times. The slow decay is
due to the contribution p1(r, t). In figure 2 we show the plot of log10(4πδp/P ) for the
same fluid at the same point, as a function of log10 t , making evident the algebraic
tail at long times.
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In order to calculate the amplitude of the long-time tail we consider the Fourier
transform in (2.21). For small wavenumber k the denominator of the coefficient
A(k, ω), given by Z(k, ω) in (2.17), has a zero on the negative imaginary ω-axis given
approximately by

ωd = −iD∗k2, (3.2)

corresponding to a non-propagating sound wave with effective diffusion coefficient

D∗ =
c2
0ρ0b

2

8η
. (3.3)

The difference with expression (14) of Pagonabarraga et al. (1999) is caused by the
difference in geometry. By use of the identity∫ ∞

0

e−D∗k2t k2 dk =

√
π

4(D∗t)3/2
(3.4)

we see that a superposition of such diffusive waves causes a t−3/2 long-time tail. From
the residue of the pole of Z(k, ω) at ωd = −iD∗k2 in the complex ω-plane we find the
long-time behaviour

p1(r, t) ≈
√

2ν

c0b3

z

(πt)3/2
P as t → ∞, (3.5)

where ν = η/ρ0 is the kinematic viscosity. The pressure disturbance δp(r, t) has the
same long-time behaviour.

In a compressible fluid the flow velocity at any point different from the origin
vanishes initially, since the finite velocity of sound limits the speed of propagation
of the disturbance because of the initial impulse. It follows from the linearized
Navier–Stokes equations (2.1) that the long-time behaviour of the pressure, given
by (3.5), corresponds to a similar t−3/2 long-time tail in the velocity component
vz(r, t). Mathematically this corresponds to the simple pole in the expressions for
the coefficients A(k, ω) and B(k, ω) for small k on the negative imaginary ω-axis. It
follows from the expansion of expression (2.7) for the infinite space Green function
that the velocity component v0z(r, t) shows the same positive t−3/2 long-time tail
because of viscous diffusion of momentum as for an incompressible fluid. This is
cancelled by a viscous contribution to v1z(r, t) by reflection at the wall of the tube, in
the same way as for an incompressible fluid. The remaining long-time tail is due to
the simple-pole contribution, corresponding to the non-propagating sound wave, and
can be calculated as above. It follows by comparison with the numerical calculation
of the inverse transform of the expressions in § 2 that this picture is correct.

For the long-time part of the velocity component v1z(r, t) we find

v1z(r, t) ≈ − P

12ρ0(πνt)3/2
−

√
2ν

4ηc0b

(
1 − R2

b2

)
P

(πt)3/2
as t → ∞, (3.6)

where the first term cancels the long-term flow for infinite space, and the second term
is the pole contribution from the diffusive sound wave. The first term is confirmed
by an asymptotic calculation for small wavenumber of the integral for v1z in the
incompressible limit. Together with (3.5) the asymptotic flow velocity satisfies the
linearized Navier–Stokes equations (2.1), as well as the no-slip boundary condition
on the wall of the tube. The asymptotic flow is independent of the bulk viscosity ηv ,
but the complete solution does depend on this transport coefficient.
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4. Velocity relaxation and Brownian motion
In conclusion we consider the velocity autocorrelation function of a Brownian

particle of radius a and mass mp , initially located at the origin. We consider only the
z-component of the motion. The velocity autocorrelation function may be evaluated
as the Fourier transform of the zz-component of the frequency-dependent admittance
tensor, which gives the mean velocity response of the particle to an applied harmonic
force. The admittance tensor differs from that for infinite space because of the no-slip
boundary condition at the wall. For a 	 b the difference may be expressed in terms
of a reaction field tensor. Here we need the zz-component given by

Fzz(0, ω) = v1zω(0)/P. (4.1)

The relevant element of the admittance tensor is (Felderhof 2005)

Yzz(0, ω) = Y0(ω)[1 + A(ω)C(ω)Fzz(0, ω)], (4.2)

where Y0(ω) is the scalar admittance for infinite space

Y0(ω) = [−iωmp + ζ (ω)]−1 (4.3)

with friction coefficient (Bedeaux & Mazur 1974)

ζ (ω) =
4π

3
ηα2a

(9 + 9αa + α2a2)B(ω) + μ2a2A(ω)

2α2B(ω) − μ2A(ω)
(4.4)

with functions A(ω) and B(ω) given by

A(ω) = 1 + αa +
1

3
α2a2, B(ω) = 1 − iμa − 1

3
μ2a2. (4.5)

The factor C(ω) in (4.2) is given by

C(ω) = 12πηα2a
B(ω)

2α2B(ω) − μ2A(ω)
. (4.6)

The zero-frequency admittance is the particle mobility. This takes the form

μzz(0) =
1

6πηa

(
1 − k0

a

b

)
, (4.7)

with coefficient k0 = 2.10444, like for an incompressible fluid (Faxén 1959).
In the theory of Brownian motion the velocity autocorrelation function of the

particle is defined by

Czz(t) = 〈Uz(t)Uz(0)〉, (4.8)

where the angle brackets denote the equilibrium ensemble average. According to the
fluctuation-dissipation theorem its Fourier transform is given by

Ĉzz(ω) =

∫ ∞

0

eiωtCzz(t) dt = kBT Yzz(0, ω). (4.9)

The reaction factor Fzz(0, ω) in (4.2) may be regarded as the Fourier transform of a
function ψz(t) according to

Fzz(0, ω) =
1

6πρ0

∫ ∞

0

eiωtψz(t) dt. (4.10)

The function ψz(t) starts at zero, since the sound wave needs a finite time to be
reflected from the wall of the tube. It follows from (3.6) that it decays with a t−3/2
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Figure 3. Plot of log10[ψz(t)/ψ̂z(0)] as a function of log10 τ for the same fluid as in figure 1
(solid curve). We compare with the straight line corresponding to the long-time tail given by
(4.11) (dashed line).

long-time tail as

ψz(t) ≈ − 1

2
√

πb3

[
1 + 3

√
2

ν

bc0

]
τ−3/2 as t → ∞, (4.11)

where τ = t/τb with τb = b2/ν. In figure 3, we plot the ratio ψz(t)/ψ̂z(0), where
ψ̂z(0) = −k0/(bν), as a function of τ on a double-logarithmic scale. The product
A(ω)C(ω) in (4.2) has the low-frequency expansion

A(ω)C(ω) = 6πηa(1 + αa) + O(ω). (4.12)

Combining the results we find for the low-frequency expansion of the admittance

Yzz(0, ω) =
1

6πηa

(
1 − k0

a

b

) √
2

2πη

ν

bc0

α + O(ω). (4.13)

Using the initial value Czz(0) = kBT /mp we hence find for the long-time behaviour of
the normalized velocity autocorrelation function

Czz(t)

Czz(0)
≈ −

√
2

4π3/2

mpν

ρ0c0b4
τ−3/2 as t → ∞. (4.14)

This corresponds to the second term in (3.6). In figure 4, we plot the normalized
velocity autocorrelation function Czz(t)/Czz(0), calculated from (4.9), as a function of
τ for a neutrally buoyant particle of radius a = 5b/9 in the same fluid as before, a
case studied in computer simulation by Hagen et al. (1997) and Pagonabarraga et al.
(1999). In figure 5 we plot the corresponding function log10 |Czz(t)/Czz(0)| as a function
of log10 τ . The correlation function passes through zero and decays with a t−3/2 long-
time tail of negative amplitude, as in the computer simulation. The theoretical curve
and the computer simulation curve are qualitatively similar. Presumably the difference
is because in the simulation the ratio a/b is not small. In the theoretical calculation
the admittance is calculated under the assumption that the ratio is small. We see
from (4.7) that for a = 5b/9 the zero-frequency admittance in the approximation used
becomes negative, so that finite-size corrections are appreciable.

The plots in figures 4 and 5 should be compared with the corresponding ones for an
incompressible fluid shown in figures 12 and 13 of Felderhof (2009). The comparison
shows that fluid compressibility has a strong influence on the velocity autocorrelation
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Figure 4. Plot of the normalized velocity autocorrelation function Czz(t)/Czz(0) as a function
of τ for a neutrally buoyant particle of radius a = 5b/9 centred on average at the origin in the
same fluid as in figure 1.
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Figure 5. Plot of log10 |Czz(t)/Czz(0)| as a function of log10 τ corresponding to figure 4 (solid
curve). We compare with the straight line corresponding to the long-time tail given by (4.14)
(dashed line).

function of a Brownian particle confined to a tube. In the incompressible limit the
correlation function decays at long times with a t−5/2 power law. In figure 6 we show
the analogue of figure 5 for a fluid with sound velocity c0 =

√
5 but otherwise the

same properties as mentioned at the beginning of § 3. The fluid corresponding to
figure 6 is 10 times less compressible than that corresponding to figure 5. The graph
shows the crossover of the decay to the slowly varying t−3/2 long-time tail.

5. Discussion
The above calculation of the Green function for the flow of a compressible viscous

fluid confined in a circular tube shows that the flow differs significantly from that of
an incompressible fluid, not only at short time but also at long times. The amplitude
of the algebraic long-time tail increases strongly as the radius of the tube gets
smaller. This suggests that in particular in microrheology it is important to take fluid
compressibility into account in the description of dynamical flow phenomena. At zero
frequency the linearized Navier–Stokes equations do not depend on compressibility,
so that in the description of steady-state flow phenomena fluid compressibility is not
relevant.
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Figure 6. Same as figure 5, but for a fluid with sound velocity c0 =
√

5, corresponding to 10
times less compressibility. We compare with the straight line corresponding to a t−5/2 power
law (short dashes).

The calculation of the flow at a particular point in space and time requires numerical
inversion of a frequency-dependent Fourier transform of the Green function. The
response to an oscillatory force at a particular frequency is of interest in itself. It may
be used for a discussion of small-amplitude swimming or pumping in the confined
geometry of a circular tube. The calculation suggests that for narrow tubes it is
important to take account of compressibility in the description of these phenomena.
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